

ASTM Building Energy Performance Assessment (BEPA) Standard E 2797

Presented by:

Anthony J. Buonicore, PE, QEP, BCEE CEO, The Buonicore Group ASTM BEPA Task Group Chairman

Overview:

- Driving Forces
- What's the problem?
- What the BEPA standard accomplishes

Driving Forces:

- Regulatory
 - Building energy use disclosure
 - Benchmarking against peers

Business

Regulatory Driving Forces:

Energy Performance Disclosure in EU

- California AB 1103
- District of Columbia
- Austin, TX
- Washington State
- Seattle, WA
- New York City, NY
- Additional Cities considering
 - Denver, Portland, San Francisco
- Additional States considering
 - IL, MA, MD, MI, MN, OH & OR
- Federal Legislation being discussed

(2003)

- (2007, effective 2011)
- (2008, effective 2010)
- (2008, effective 2011)
- (2009, effective 2011)
- (2010, effective 2011)
- (2009, effective 2011)

Business Driving Forces:

- More energy efficient buildings
 - Lower operating costs
 - Higher net operating income
 - More valuable
 - More attractive to tenants
- Less energy efficient buildings
 - Less competitive in the marketplace
 - In danger of obsolescence

What's the problem?

- Prospective purchasers as part of due diligence are asking what is the "building's energy consumption?"
- Pro Forma provided to lenders by buyers for financing has line item for utilities under building operating costs
 - Lenders want a "reasonable" and "realistic" value here
 - No consistent methodology exists to provide answers

What's the problem? (cont.)

- Significant variability depending on:
 - Period of time chosen over which the data was collected (1 yr, 2 yrs, 3 yrs) and how it was calendarized
 - Whether or not changes in building occupancy was considered
 - How weather conditions were factored in and baseline conditions established
 - How building operating hours were considered
 - Whether or not major building renovations were considered

What does the BEPA Standard accomplish?

- Standardizes the collection and reporting of energy consumption information for a building involved in a real estate transaction
- Provides a supplementary scope of work that can compliment property due diligence (e.g. Phase I or PCA)
- Use of the BEPA standard will facilitate improved benchmarking (by others)

Report Deliverables

- Pro Forma (representative) building energy use
- Pro Forma (representative) building energy cost
- Projected range of building energy use for:
 - lower, upper and average case
- Projected range of building energy *cost* for:
 - lower, upper and average case
- Actual building energy use data for each year collected
- Actual building energy *cost* data for each year collected

Use of BEPAs in the marketplace:

- Likely to be combined with an ASHRAE Level I Energy Audit and/or Benchmarking (BEPA Plus)
- ESCOs energy auditing (BEPA and BEPA Plus)
- Asset management of property portfolios (BEPA Plus)
- Property due diligence in acquisition or disposition (BEPA and BEPA Plus)
- Building energy use regulatory disclosure (BEPA)
- Support "energy efficiency" loans (BEPA Plus)

ASTM BEPA Plus Case Study -Emerging Best Practices

Presented by:

Brian McCarter Chairman & CEO

ASTM BEPA Plus Case Study

Overview of Emerging Best Practice Methodology:

- Stakeholder value received from ASTM BEPA
 - Prospective Buyer
 - Prospective Lender
 - Due Diligence Consultant
- Role of ASTM BEPA Standard
 - Foundational scope of work
 - Baseline & projected energy use & cost calculations
 - Complementary to existing benchmark & rating systems
 - Standardized reporting methodology

ASTM BEPA Emerging Best Practices – Buyer Perspective

Stakeholders value received:

Prospective Buyer – gains visibility to subject property's:

- Baseline and projected / pro forma energy use and cost profile
 - Considers impact of primary independent variables
 - Historical weather, occupancy, operating hours
- Benchmark to peer buildings
 - Energy consumption & cost performance comparisons
- Competitive position of asset compared to local market peer group
- Identify energy efficiency retrofit opportunities with compelling
 - ROI & payback term
 - Asset enhancement value
- Identify potential government & utility economic incentive programs to improve ROI

ASTM BEPA Emerging Best Practices – Lender Perspective

Stakeholders value received:

Prospective Lender – gains visibility to subject property & borrower characteristics:

- Property pro forma energy use & cost profile for lender underwriting
- Potential energy efficiency retrofit opportunities with compelling ROI
 - Incremental energy efficiency based loan opportunities
 - Borrower repayment ability enhanced due to lower operating expenses
 - Collateral value enhanced due to energy efficiency improvements
- Potential government (federal, state, local) & utility economic incentive programs to improve ROI on energy efficiency retrofit initiatives

ASTM BEPA Emerging Best Practices – Consultant Perspective

Stakeholders value received:

Due Diligence Consultant:

- Extension of core due diligence service line (PCA & ESA) to include BEPA
- Leverage installed client base for BEPA services:
 - Lenders (transactions & energy loan program support)
 - Buyers / investors (transactional BEPA)
 - Owners / managers (ongoing portfolio monitoring & optimization)
 - Sellers (energy disclosure compliance)
- Post closing value-add opportunities: (beyond transactional services)
 - Energy efficiency retrofits project management
 - Ongoing property & portfolio level monitoring & optimization
 - Smart deployment of capital improvement budget impacting energy

Collect Building Characteristics Data

- Class A, multi-tenant office building in pre-acquisition due diligence
 - 212,000 Sq. Ft.
 - Norwalk, CT

Main Space (Office)				
Name	Value	Units		
Office Gross Floor Area	212000.0	ft2		
Office Weekly Operating Hours	ffice Weekly Operating Hours 85 h			
Office Main Shift Workers	Office Main Shift Workers 685.0			
Office Number of PCs	625			
Office Percent Heated 100				
Office Percent Air Conditioned	100			

Collect Historic Monthly Utility Consumption & Cost Data:

- Electricity
- Fuels
- Normalize to Calendar Month

Collect Historic Occupancy & Operating Hours Data

Primary Independent Variables

- Weather
- Occupancy
- Operating Hours

Calculate Energy Baseline per ASTM BEPA Standard Methodology

- Total Energy Use & EUI
- Total Energy Cost & Cost/SF

Baseline Performance Indicators (for 12 months ending Jan 31, 2010)						
Gross Floor Space:	203,698	ft ²				
Total Energy Use:	20,584	mmBTU				
Energy Use Intensity (EUI):	101.1	kBTU/ft ²				
Total Energy Cost: \$489,174						
Energy Cost per SF:	\$2.40	/ft ²				

Forecast Energy Use & Cost, considering independent variables impact

- Historic Weather
- Heating & Cooling Degree
 Days (HDD & CDD)
- Statistical Analysis over 10+ year period to determine
 - Best case
 - 25th Percentile
 - Mean
 - 75th Percentile
 - Worst case

Calculate Projected Range of Energy Use – Impact of Weather

- Best case
- 25th Percentile
- Mean
- 75th Percentile
- Worst case

Weather	Electricity Use (kWh)	Fuel Use (kBTU)	Total Energy Use (kBTU)	CDD	HDD	TOTAL DD
Best	3,231,392	6,222,550	17,249,031	440	4,096	4,536
25%	3,337,396	7,425,541	18,813,738	756	4,851	5,606
Mean	3,370,049	8,041,070	19,540,689	853	5,237	6,090
Median	3,370,995	8,143,352	19,646,197	856	5,302	6,157
75%	3,457,343	9,179,836	19,940,844	1,112	5,952	7,064
Worst	3,506,565	9,920,751	21,886,204	1,259	6,417	7,676
Baseline Data:		F				
Last 12 Mo.	3,526,749	8,550,940	20,585,266	548	5,302	5,850
% from Mean	4.6	6.3	5.3	-35.7	1.2	-3.9

Range of Energy Use – Impact of Occupancy & Operating Hours

	Cooli Da	ing Degree ys (CDD)	Heating Degree Days (HDD)	Impact of	Weather
				Total Energy Use (kBTU)	Total EUI (kBTU/ft ²)
Average Weather Year		853	5,237	19,540,689	95.93
	ļ	Verage	Ī		
Occupancy Rate (%) Operating Hours/Week		89.5 68.0	5		
Energy Use Impact (kBTU)		20,680)		
EUI Impact (kBTU/ft ²)		0.10)		
Pro Forma Energy Use (kBTU)	1	19,561,369			
Pro Forma EUI (kBTU/ft ²)		96.03	5		

Calculate Projected Range of Energy Costs

- Best case
- 25th Percentile
- Mean
- 75th Percentile
- Worst case

Range of Building Energy Cost - Impact of Weather							
	CDD Best	CDD 25%	CDD Mean	CDD Median	CDD 75%	CDD Worst	
HDD Best	\$432,078						
HDD 25%		\$456,244		1			
HDD Mean			\$466,139				
HDD Median				\$467,271			
HDD 75%					\$487,522		
HDD Worst						\$500,568	
Baseline Data: Last 12 Mo. % from Mean	\$489,174 4.9						
% from Mean	4.9						

Calculate Pro Forma Energy Use & EUI

Energy Use & EUI in Average Weather Year with Average Occupancy & Operating Hours

Pro Forma	Pro Forma	
Building Energy Use	Building Energy Use Intensity (EUI)	
19,561,369 kBTU/yr	96.03 kBTU/ft ²	

Calculate Pro Forma Energy Cost

Energy Cost in Average Weather Year with Average Occupancy & Operating Hours

Pro Forma	Pro Forma
Building Energy Cost	Building Energy Cost per SF
\$464,843	\$2.28 /ft ²

Benchmark Against Peer Buildings – Energy Use Intensity (EUI)

Benchmark Against Peer Buildings – Energy Cost per SF

	Nationwide	Energy Cost	per SF (\$/ft2/yr)			
	(15,655 peer buildings)		2.40			
Local Markel		25% 1.52	Median 2.40	75% 3.79		
Comporisono			•			
Compansons	Same Climate Region	Energy Cost	ost per SF (\$/ft2/yr)			
	(3,247 peer buildings)		2.40			
		25% 1.36	Median 2.11	75% 3.10		
		· · ·	ľ			
	Same State Energy Cost per SF (\$/ft2/yr)					
	(307 peer buildings)	2.40				
		25% 2.44	Median 3.54	75% 5.08		
		- 1		1		
	Same CBSA Market	Energy Cost Subject Prope	per SF (\$/ft2/yr) erty			
	(91 peer buildings)	2.40	1			
		25% 3.00	Median 4.32	75% 6.36		
		- 1		1		
	Same 3-Digit Zip Code	Energy Cost Subject Prope	per SF (\$/ft2/yr) erty			
	(51 peer buildings)	2.40	·· -2			
		25% 3.20	Median 4.79	75% 6.85		

Benchmark Against Peer Buildings – Potential Asset Value Impact

Peer Group Performance Distribution	Subject Property Potential EUI Savings	Subject Property Potential Annual Energy Cost	Subject Property Potential Asset Valuation Impact at Assumed Capitalization Rate				
Distribution	(kBTU/ft ² /yr)	Savings (\$/yr)	5.0%	6.0%	7.0%	8.0%	9.0%
25% Percentile	36.15	\$197,535	\$3,950,697	\$3,292,247	\$2,821,926	\$2,469,186	\$2,194,832
Median	2.68	\$14,647	\$292,937	\$244,114	\$209,241	\$183,086	\$162,743
Mean	N/A	N/A	N/A	N/A	N/A	N/A	N/A
75% Percentile	N/A	N/A	N/A	N/A	N/A	N/A	N/A
CBSA peer group performance data is current through July 2010.							

Opportunity Quantification from Peer Building Benchmarking:

- Subject property performance lags CBSA peer group median & 25th%
- Potential impact of improving performance to meet CBSA peer group 25th%
 - \$197,535 annual energy cost savings
 - \$2.8 million asset value increase at 7% cap rate assumption

Benchmark Against Peer Buildings – Energy Star Benchmarking

Identify Specific Green Building Attributes that Enhance Asset Value

U.S. GREEN LEED [®]	BUILDING COUNCIL
LEED Certification Type	LEED-EBOM
LEED Certification Level	Silver
LEED Points	46
LEED AP	John Green

Analyze Retrofit Opportunities – ASHRAE Protocol

- ASHRAE Protocol Recommendations for Energy Cost Savings Measures
- Estimate ROI & Payback Term

Lighting Ret	rofit	Installed Cost:	\$50,000 - \$55,000
Upgrade T-12 fluorescent lighting to T-8 lamps and		Est. Annual Savings:	\$10,000
ballasts.		Est. Annual CO2 Savings:	90 tons
Difficulty	Moderate	Est. Payback Term:	2.5 - 3.0 years
Impacts	Energy and Atmosphere	Asset Value Increase:	\$112,931 - \$107,931
		CAP Rate:	7.25%
		ROI:	40.0 - 33.3%

Research Government & Utility Economic Incentive Programs

Local, State & Federal
 Government Incentive Programs

 Utility Company Energy Incentive Programs

Financial Incentives

Industry Recruitment/Support

- <u>CCEF Operational Demonstration Program</u>
- New Energy Technology Program

Leasing Program

<u>CCEF - CT Solar Lease</u>

Local Loan Program

- New Generation Energy Community Food Service Efficiency Lending Program
- New Generation Energy Community Solar Lending Program

Property Tax Incentive

Property Tax Exemption for Renewable Energy Systems

Sales Tax Incentive

- Sales and Use Tax Exemption for Energy-Efficient Products
- Sales and Use Tax Exemption for Solar and Geothermal Systems

State Grant Program

- <u>CCEF Community Innovations Grant Program</u>
- <u>CCEF On-Site Renewable DG Program</u>

State Loan Program

- <u>CHIF Energy Conservation Loan</u>
- DPUC Low-Interest Loans for Customer-Side Distributed Resources

State Rebate Program

- <u>CCEF Geothermal Rebate Program</u>
- CCEF Solar PV Rebate Program
- <u>CCEF Solar Thermal Incentive Program</u>
- CEEIP Commercial and Industrial Rebate Program

Utility Grant Program

- Connecticut Light & Power Energy Conscious Blueprint Grant Program
- The United Illuminating Company Energy Conscious Blueprint Grant Program

BEPA Plus Emerging Best Practice – "How it Works" Case Study Incorporating Industry Best Practice Analytics in BEPA Plus Report

- ASTM BEPA Standard Methodology Baseline & Projected Energy Use & Cost
- Benchmark Against Peer Buildings local, regional & national peer group KPIs
- Energy Star Rating energy efficiency rating to national peer group
- CMP Green Value Score identify green building attributes that add asset value
- LEED Certification Status type, level, category points distribution
- Economic Incentive Programs enhance retrofits ROI & payback
- ASHRAE Level I & II Recommendations Protocol retrofits with compelling ROI
- Carbon Emissions Calculation associated with building's energy use

BEPA Plus Emerging Best Practices – Meeting Stakeholder Needs

BEPA Plus is Good Business – Potential Win/Win/Win for 3 Stakeholders

- Prospective Buyers Visibility to:
 - Projected / pro forma energy use & cost
 - Competitive position of property relative to local peer buildings
 - Energy retrofit opportunities with compelling ROI & payback
- Prospective Lender Visibility to:
 - Risks & opportunities relative to energy performance for loan underwriting
 - Energy efficiency based loan opportunities
 - Increased NOI borrower repayment ability & asset value enhancement
- Due Diligence Consultants:
 - Extend (PCA & ESA) service line to include BEPA to core clients
 - Post closing value-add opportunities beyond transactional services
 - ongoing monitoring & optimization
 - smart deployment of capital improvement budget impacting energy

ASTM BEPA Standard Emerging Best Practices

Presented by:

Brian McCarter

Chairman & CEO